20 resultados para Bioactivity Alginate

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, many consumers search for food with functional characteristics beyond their nutritional properties. Thus, the concept of functional food becomes a hot topic, allowing the obtaining of health benefits, including disease prevention. In this context, plants are recognized as sources of a wide range of bioactives, mainly phenolic compounds. In particular, the Rosmarinus officina/is L., commonly referred as rosemary, has several phenolic compounds with different bioactive properties such as antioxidant, antiinflammatory and antimicrobial activities, among others [!]. Hence, this plant has great potential for incorporation into foods in order to confer bioactivity to the final products. However, it should be highlighted that the bioactive compounds if exposed to adverse environments, for example: light, moisture, extreme pH, storage, food processing conditions, can be degraded leading to the consequent loss of bioactivity [2]. The microencapsulation is an alternative to overcome this problematic of bioactive compounds, as also to ensure controlled release, or target deliver to a specific site [3]. In this work, lyophilized rosemary aqueous extract prepared by in:'usion was used as a functional ingredient for cottage cheeses, after proving that it possesses, both higher content in phenolic compounds and higher antioxidant activity, comparatively with the corresponding hydroethanolic extract. The rosemary aqueous extract revealed, for example, a DPPH scavenging activity with an EC50 value of 73.44±0.54j!g/mL and presented as main phenolic compound the caffeic acid dimer, commonly named as rosmarinic acid. For the functionalized cottage cheeses, a decrease of bioactivity was observed after seven days under storage in fridge, when the extracts were incorporated in its free form. Therefore, to preserve the antioxidant activity, the rosemary aqueous extract was efficiently microencapsulated by using an atomization/coagulation technique and alginate as the matrix material and thereafter incorporated into the cottage cheeses. The final microspheres showed a size, estimated by OM using a magnification of I OOx, ranging between 51.1 and 122.6 J!m and an encapsulation efficiency, estimated through an indirect method, approaching 100%. Overall, the introduction of both free and microencapsulated extracts did not change the nutritional value of cottage cheeses, providing bioactivity that was more preserved with microencapsulated extracts putting in evidence the importance of using microencapsulation to develop effective functional foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays the rising cost of health care and pharmaceutical products, the increase in life expectancy as well as the demand for an improved quality of life, has led to an increased concern about food intake and an emergence of new concepts of nutrition [1]. Mushrooms have been pointed out as an excellent option to include in a healthy diet, due to their nutritional value [2] associated with their bioactive properties [3]. The current study presents the chemical profile of two edible species, Leccinum molle (Ban) Ban and Leccinum vulpinum Watling, harvested in the outskirts of Bragan9a (Northeastern Portugal), regarding their content in nutrients and nonnutrients. Individual profiles of sugars and fatty acids were obtained by HPLC-RI and GC-FID, respectively. Tocopherols were analysed by HPLC-fluorescence, and the non-nutrients (i.e., phenolic and other organic acids) by HPLC-PDA. The antioxidant activity of the methanolic extracts obtained from both species was assessed with different assays (e.g. reducing power, radical scavenging activity and lipid peroxidation inhibition) and their hepatotoxicity was evaluated in primary cell cultures obtained from porcine liver, PLP2. Generally, both Leccinum species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and higher percentages of mono- and polyunsaturated fatty acids in comparison with saturated fatty acids. The presence of bioactive compounds was also detected, namely phenolic (e.g., gallic, protocatechuic and p-hydroxybenzoic acids) and organic acids (e.g., citric and fumaric acids). Both species presented antioxidant properties, being L. vulpinum the species which showed the most promising results (higher contents of total phenolic acids and lower ECso values in all the performed assays). Neither of the extracts presented toxicity against the liver primary cells PLP2, up to maximal concentration tested (Giso > 400 μg/ml).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, there is a trend for healthy food products, preferably incorporating natural bioactive ingredients, replacing synthetic additives. From previous screening studies, extracts of Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) maintained nutritional properties and improved the antioxidant activity of cottage cheese. Nevertheless, this effect was limited to 7 days. Accordingly, aqueous extracts of these plants were microencapsulated in alginate and incorporated into cottage cheese to achieve an extended bioactivity. Plain cottage cheese, and cheese functionalized by direct addition of free decoctions, were prepared and compared. Independently of plant species, "functionalization type" factor did not show a significant effect on the nutritional parameters, as also confirmed in the linear discriminant analysis, where these parameters were not selected as discriminating variables. Furthermore, samples functionalized with microencapsulated extracts showed higher antioxidant activity after the 7th day, thereby demonstrating that the main purpose of this experimental work was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytochemical profiles and bioactivities of red, white and pink globe amaranth (Gomphrena haageana K., Gomphrena globosa var. albiflora and Gomphrena sp., respectively), much less studied than the purple species (G. globosa L.), were compared. The chemical characterization of the samples included the analysis of macronutrients and individual profiles of sugars, organic acids, fatty acids, tocopherols, and phenolic compounds. Their bioactivity was evaluated by determining the antioxidant and anti-inflammatory activities; the absence of cytotoxicity was also determined. Red and pink samples showed the highest sugar content. Otherwise, the white sample gave the highest level of organic acids, and together with the pink one showed the highest tocopherol and PUFA levels. Quercetin-3-O-rutinoside was the major flavonol in white and pink samples, whereas a tetrahydroxy-methylenedioxyflavone was the major compound in the red variety, which revealed a different phenolic profile. The pink globe amaranth hydromethanolic extract revealed the highest antioxidant activity, followed by those of red and white samples. The anti-inflammatory activity was more relevant in red and pink varieties. None of the samples presented toxicity in liver cells. Overall, these samples can be used in bioactive formulations against inflammatory processes and in free radical production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural resources like plants are currently used all over developed and under developed countries of the world as traditional home remedies and are promising agents for drug discovery as they play crucial role in traditional medicine. The use of plants for medicinal purpose usually varies from country to country and region to region because their use depends on the history, culture, philosophy and personal attitudes of the users (Ahmad et al., 2015). The use of plants and plant products as drugs predates the written human history (Hayta et al., 2014). Plants are a very important resource for traditional drugs and around 80% of the population of the planet use plants for the treatment of many diseases and traditional herbal medicine accounts for 30-50% of the total medicinal consumption in China. In North America, Europe and other well-developed regions over 50% of the population have used traditional preparations at least once (Dos Santos Reinaldo et al., 2015). Medicinal plants have been used over years for multiple purposes, and have increasingly attract the interest of researchers in order to evaluate their contribution to health maintenance and disease’s prevention (Murray, 2004). Recently between 50,000 and 70,000 species of plants are known and are being used in the development of modern drugs. Plants were the main therapeutic agents used by humans from the 19th century, and their role in medicine is always topical (Hayta et al., 2014). The studies of medicinal plants are rapidly increasing due to the search for new active molecules, and to improve the production of plants or bioactive molecules for the pharmaceutical industries (Rates, 2001). Several studies have been reported, but numerous active compounds directly responsible for the observed bioactive properties remain unknown, while in other cases the mechanism of action is not fully understood. According to the WHO 25% of all modern medicines including both western and traditional medicine have been extracted from plants, while 75% of new drugs against infective diseases that have arrived between 1981 and 2002 originated from natural sources, it was reported that the world market for herbal medicines stood at over US $60 billion per year and is growing steadily (Bedoya et al., 2009). Traditional medicine has an important economic impact in the 21st century as it is used worldwide, taking advantage on the low cost, accessibility, flexibility and diversity of medicinal plants (Balunas & Kinghorn, 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Além de ser o cogumelo mais consumido no mundo, Agaricus bisporus é um dos cogumelos mais ricos em ergosterol, representando esta molécula quase 90% da sua fração de esteróis. Vários estudos têm atribuído ao ergosterol diferentes bioatividades, incluindo efeitos hipocolesterolémicos semelhantes aos exibidos pelos fitoesteróis. Isto torna o ergosterol uma molécula interessante para ser estudada como composto nutracêutico. Assim, este trabalho teve como objetivo avaliar o potencial de utilização dos extratos de A. bisporus ricos em ergosterol na produção de bebidas lácteas funcionais. Para o efeito, foram realizados testes de incorporação do extrato e do ergosterol puro em iogurtes que se compararam com bebidas lácteas funcionais comerciais (aditivadas com fitoesteróis). As amostras de A. bisporus foram submetidas a uma extração assistida por ultrassons e os extratos obtidos (IEXT), bem como a molécula de ergosterol em diferentes concentrações (IERG1 e IERG2), foram incorporados em iogurtes, e comparadas com amostras controlo (amostras de iogurte sem aditivos) (ICN) e iogurtes comerciais contendo fitoesteróis (ICP). Todas as amostras foram analisadas imediatamente após a incorporação (T0), e após sete dias de armazenagem a 4°C (T1), em relação aos parâmetros nutricionais, atividade antioxidante e propriedades citotóxicas em linhas celulares tumorais humanas e numa cultura primária de células de fígado de porco (não tumoral) para avaliação da toxicidade. O teor de ergosterol incorporado na forma pura, ou presente nos extratos, foi monitorizado por HPLC-UV. Adicionalmente, foi realizado um estudo de microencapsulação utilizando a técnica de coacervação, tendo o quitosano e o isolado proteico de soro como materiais encapsulantes. Num ensaio preliminar determinou-se o pH conducente a um maior rendimento de encapsulação e, seguidamente, verificou-se a influência da razão proteína:quitosano (P/Q) e da temperatura utilizada, no rendimento de encapsulação (Y1), na eficiência de encapsulação (Y2) e na carga (teor de ergosterol nas microesferas) (Y3). Posteriormente, o estudo foi realizado baseando-se nas melhores condições para encapsular ergosterol, sendo também avaliadas as respostas Y1, Y2 e Y3. Além de ser o cogumelo mais consumido no mundo, Agaricus bisporus é um dos cogumelos mais ricos em ergosterol, representando esta molécula quase 90% da sua fração de esteróis. Vários estudos têm atribuído ao ergosterol diferentes bioatividades, incluindo efeitos hipocolesterolémicos semelhantes aos exibidos pelos fitoesteróis. Isto torna o ergosterol uma molécula interessante para ser estudada como composto nutracêutico. Assim, este trabalho teve como objetivo avaliar o potencial de utilização dos extratos de A. bisporus ricos em ergosterol na produção de bebidas lácteas funcionais. Para o efeito, foram realizados testes de incorporação do extrato e do ergosterol puro em iogurtes que se compararam com bebidas lácteas funcionais comerciais (aditivadas com fitoesteróis). As amostras de A. bisporus foram submetidas a uma extração assistida por ultrassons e os extratos obtidos (IEXT), bem como a molécula de ergosterol em diferentes concentrações (IERG1 e IERG2), foram incorporados em iogurtes, e comparadas com amostras controlo (amostras de iogurte sem aditivos) (ICN) e iogurtes comerciais contendo fitoesteróis (ICP). Todas as amostras foram analisadas imediatamente após a incorporação (T0), e após sete dias de armazenagem a 4°C (T1), em relação aos parâmetros nutricionais, atividade antioxidante e propriedades citotóxicas em linhas celulares tumorais humanas e numa cultura primária de células de fígado de porco (não tumoral) para avaliação da toxicidade. O teor de ergosterol incorporado na forma pura, ou presente nos extratos, foi monitorizado por HPLC-UV. Adicionalmente, foi realizado um estudo de microencapsulação utilizando a técnica de coacervação, tendo o quitosano e o isolado proteico de soro como materiais encapsulantes. Num ensaio preliminar determinou-se o pH conducente a um maior rendimento de encapsulação e, seguidamente, verificou-se a influência da razão proteína:quitosano (P/Q) e da temperatura utilizada, no rendimento de encapsulação (Y1), na eficiência de encapsulação (Y2) e na carga (teor de ergosterol nas microesferas) (Y3). Posteriormente, o estudo foi realizado baseando-se nas melhores condições para encapsular ergosterol, sendo também avaliadas as respostas Y1, Y2 e Y3. As bebidas funcionalizadas com o extrato (IEXT) e com ergosterol na mesma concentração existente no extrato (IERG1) revelaram uma atividade antioxidante similar às bebidas comerciais com fitoesteróis. No entanto, as bebidas com ergosterol na mesma concentração do extrato de A. bisporus e de fitoesteróis (IERG2) revelaram uma atividade antioxidante superior. Além disso, apenas IEXT, IERG1 e IERG2 apresentaram um aumento na atividade antioxidante de T0 para T1, com destaque para a atividade exibida por IERG2, significando que o ergosterol e os extratos foram capazes de proteger a bebida láctea da oxidação, aumentando a vida de prateleira do produto. IERG2 foi a amostra que revelou a maior citotoxicidade para as linhas celulares tumorais, enquanto as bebidas com fitoesteróis mostraram a menor atividade, sem diferenças significativas entre T0 e T1. Os estudos de microencapsulação revelaram ainda que a técnica de coacervação permite obter cápsulas de distintos tamanhos e que as condições ótimas do processo ocorrem a pH 5,5, com temperatura de 55ºC e razão P/Q de 0,5, com um menor rendimento de encapsulação, mas com uma maior carga em ergosterol. Este trabalho contribuiu para o estudo do potencial da utilização de extratos de A. bisporus com ergosterol no desenvolvimento de novas bebidas funcionais. Constituiu um primeiro passo que necessita de estudos subsequentes relacionados com a avaliação da viabilidade da sua utilização ao nível industrial e demonstração clara da sua bioatividade in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mushrooms are an important source of natural compounds with acknowledged bioactivity. Pleurotus eryngii (DC.) Quél., in particular, is widely recognized for its organoleptic quality and favorable health effects, being commercially produced in great extent. On the other hand, Suillus bellinii (Inzenga) Watling is an ectomycorrhizal symbiont, whose main properties were only reported in a scarce number of publications. Some current trends point toward using the mycelia and the culture media as potential sources of bioactive compounds, in addition to the fruiting bodies. Accordingly, P. eryngii and S. bellinii were studied for their composition in phenolic acids and sterols, antioxidant capacity (scavenging DPPH radicals, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition), anti-inflammatory effect (by down-regulating LPS-stimulated NO in RAW264.7 cells) and anti-proliferative activity (using MCF-7, NCI-H460, HeLa, HepG2 and PLP2 cell lines). Overall, S. bellinii mycelia showed higher contents of ergosterol and phenolic compounds (which were also detected in higher quantity in its fruiting body) and stronger antioxidant activity than P. eryngii. On the other hand, P. eryngii mycelia showed anti-inflammatory (absent in S. bellinii mycelia) and a cytotoxicity similar (sometimes superior) to its fruiting bodies, in opposition to S. bellinii, whose mycelia presented a decreased anti-proliferative activity. Furthermore, the assayed species showed differences in the growth rate and yielded biomass of their mycelia, which should also be considered in further applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Borututu ( Cochlospermum angolensis Welw.) is a widespread tree in Angola used since antiquity by traditional healers for the prevention and treatment of hepatic diseases and for the prophylaxis of malaria [1]. This plant is mostly consumed as infusions but is also available as dietary supplements, such as piiis, capsules, and syrups, among others. In the present study, the aim was to evaluate the proximate composition and energetic contribution of borututu as weii as its composition in hydrophilic (sugars and organic acids) and lipophilic (fatty acids and tocopherols) compounds, given the fact that this plant is directly introduced in some dietary supplements. Furthermore, the bioactivity (antioxidant, hepatoprotective and antimicrobial activities) of three different formulations of borututu (infusion, pills, and syrup) was assessed and compared, and since plant beneficial properties are often ascribed to phenolic compounds [2], the phenolic profile of the formulations was also analysed. Carbohydrates (88 g/100 g) and fat (2.5 g/100 g) were the major and tl1e minor components of the studied borututu dry barks, respectively, with an energetic contribution of 384 kcal/100 g. Fructose was the most abundant sugar (1.3 g/100 g), foilowed by sucrose, trehalose and glucose (1.1, 0.98 and 0.79 g/100 g, respectively). Oxalic (0.70 g/100 g), malic (0.63 g/100 g) and citric (0.57 g/100 g) acids were present in higher amounts but shikimic and fumaric acids were also detected. Among the fatty acids found in borututu, a prevalence of saturated fatty acids (SF A; 48.2%) was observed, whereas polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids were detected in relative percentages of 30.9% and 20.8%, respectively. P-tocopherol was the most abundant of the four isoforms found in the sample, foiiowed by o-, a- and y-tocopherol, present in concentrations of 597,43, 3.7 and 2.0 g/100 g, respectively. Borututu infusion revealed the highest antioxidant activity, with EC50 values ranging from 20 to 600 J.lg/mL and was the only formulation inhibiting the growth of an HepG2 ceii line, with a Gl5o value of 146 J.lg/mL. This formulation.also revealed the best antimicrobial capacity and proved to be able to inhibit the growth of Escherichia coli, E. coli ESBL, Staphylococcus aureus and Pseudomonas aeruginosa, with MIC values of 50, 6.2, 1.6 and 25 mg!mL, respectively. Pills revealed activity against some of the studied bacterial strains and the syrup did not reveal antimicrobial activity at the studied concentration. Eilagic acids, methyl ellagic acids, eucaglobulinlglobulusin B and (epi)gaiiocatechin-0-gallate were the compounds present in all the different formulations. The highest concentration of phenolic compounds was found in the infusion extract. Protocatechuic acid was the most abundant phenolic compound in the infusions, the only preparation where it was detected, whereas ( epi)gaiiocatechin- 0-gallate was the main phenolic in the pills and eucaglobulinlglobulusin in the syrup. In a general way, borututu proved to be a good source of phytochemicals such as phenolic compounds, with the infusions revealing the best bioactive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are two examples of plants with reported antioxidant and antimicrobial properties, which can be related with their composition in phenolic compounds [1,2]. Furthermore, according to previous results of our research group, the direct incorporation of the aqueous extracts showed capacity to maintain the nutritional properties of the cottage cheeses, up to 7 days of storage, while improving the antioxidant potential. However, after 14 days, a decrease in the antioxidant properties was observed [1,2], which can be related with factors such as light, moisture, temperature and pH, that can cause bioactive compounds degradation. Therefore, the aim of the present study was to prepare microcapsules with the aqueous extracts of fennel and chamomile for incorporation in cottage cheese samples, in order to protect the bioactive molecules present in the extracts, such as phenolic compounds, and prevent the decrease of the antioxidant activity observed after the 14 days period. The microspheres were prepared using an atomization/coagulation technique. Sodium alginate was used as the matrix material to produce the microspheres that were characterized through optical microscopy (OM), during and after atomization, for inspecting morphology. The encapsulation efficiency (EE) was determined by HPLC-DAD by an indirect method by analysing the coagulation solution. FTIR was also used to attest the presence of the extract inside of the alginate matrix. These microencapsulated extracts were incorporated in cottage cheese samples that were further characterized in terms of nutritional properties and antioxidant potential right after incorporation, and after 7 and 14 days of storage at 4•c. The EE was estimated as -100% and the FTIR analysis confirmed the presence of the extracts inside the microspheres. The results showed that the incorporation of the microencapsulated extracts did not cause changes in the nutritional value of cottage cheeses (through a comparison with control samples without extracts). The predominant fatty acids were palmitic (C16:0) and oleic (CI8:0) acids. The order of abundance of fatty acids was as follows: saturated fatty acids (SF A)> monounsaturatcd fatty acids (MUF A)> polyunsaturated fatty acids (PUF A). Regarding free sugars, lactose was the only sugar identified and quantified in all samples. Regarding the antioxidant activity, the samples functionalized with the microencapsulated extracts showed a higher preservation of this property even after the 7th day of storage. Overall, the incorporation of the protected plant extracts in dairy foods can be a strategy to provide health benefits to consumers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic additives used in a wide variety of food products have been associated to some toxic effects. This conducted to an increasing interest of consumers for natural additives, including food preservers [1]. Many aromatic herbs have been used to prepare bioactive extracts with benefits to the consumer's health. Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are examples of popular herbs rich in phenolic compounds with documented antioxidant and antimicrobial properties [2,3]. The present work confirms the antioxidant (DPPH scavenging activity, reducing power and lipid peroxidation inhibition) and antimicrobial (against bacteria such as Bacillus cereus and Salmonella Typhimurium and fungi such as Aspergillus niger, A. versicolor and PenicilliumfimicuJosum) activities of fennel and chamomile extracts, obtained by decoction. The chemical characterization of the extracts, performed by HPLC-DAD-ESIIMS, revealed the presence of five flavonoids (mainly qercetin-3-0- glucoside) and twelve phenolic acids (mainly 5-0-caffeolyquinic acid) for fennel extract and the presence of nine flavonoids (mainly luteolin-0-glucuronide) and ten phenolic acids (mainly di-caffeoyl-2,7- anhydro-3-deoxy-2-octulopyranosonic acid) for chamomile extract. Due to their high antioxidant and antimicrobial activities, both extracts were then incorporated (at DPPH scavenging activity EC25 value: 0.35 mg/mL and 0.165 mg/mL for fennel and chamomile, respectively) in cottage cheeses (prepared by Queijos Casa Matias Lda) as natural additives with two objectives: to increase the shelf-life of the cottage cheeses and to provide bioactive properties to the final products. The results showed that the use of these natural extracts did not alter significantly the nutritional characteristics of the cottage cheese in comparison with control samples (cottage cheese without extracts), but improved its antioxidant potential (more evident in the samples with chamomile extract). After 14 days of storage, only the control samples showed signs of degradation. Overall, the present study highlights the preservation potential of fennel and chamomile extracts in cottage cheeses, improving also their bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle), belonging to the Asteraceae family, are medicinal plants vo.ith well-reported antioxidant and hepatoprotective effects. Widely consumed as infusions, these plants can also be found in several formulations to allow an easier consumption. The bioactivity of infusions, pills, and syrups based on artichoke and milk thistle was previously reported by our research group [1 ,2] and among the various phytochemicals present in these dietary supplements, phenolic compounds are pointed out as the most responsible for their beneficial properties. With the aim of studying the antimicrobial activity and possible relation vo.ith the phenolic composition, two different formulations of each plant were assessed (pills and syrups). The phenolic profiles were obtained by HPLC-DAD-ESIIMS, and the antimicrobial activity was performed with clinical isolates from hospitalized patients, namely Escherichia coli, Escherichia coli spectrum extended producer of P-lactarnases (ESBL), Proteus mirabilis, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA). Vanillic acid (5.58 J.tg/g) and luteolin-7-0-glucoside (2.2 J.tg/g) were the most abundant compounds in artichoke syrup, that did not reveal antimicrobial activity against the studied strains, which could be due to their low concentrations. On the other hand, artichoke pills presented a prevalence of 5-0-caffeoylquinic (28.2 J.tg/g), 1,3-dicaffeoylquinic (24 J.tg/g), and 4-0-Caffeoylquinic acids (13.3 J.tg/g); revealing the capacity to inhibit MRSA vo.ith a MIC value of 1.9 mg!g. Regarding milk thistle, isorhamnetin-0-deoxyhexoside-0-hexoside, isorhamnetin-3-0-rutinoside, and isorhamnetin-0-deoxyhexoside-0-dihexoside were the major compounds detected in the syrup, in concentrations of 7.26, 5. 75, and 3.64 J.tg/g, respectively. This formulation proved to be able to inhibit the growth of E. coli, ESBL, MRSA and P. aeruginosa, with MIC values ranging from 0.2 to 1.3 mg!mL. Hydroxylated silibinin (1.565 J.!g/g) was the major flavonoid found in the pills, that revealed antimicrobial activity against ESBL, with a MIC value of 15 mg!mL, but did not inhibit the growth of the remaining bacteria None of the studied samples was able to inhibit P. mirabilis at the studied concentrations (1000 and 26.4 mg!mL for the syrups of artichoke and milk thistle, respectively; 150 mg/mL for both pills). Overall, the studied syrups and pills of artichoke and milk thistle revealed to be a good source of phenolic compounds, with some of these formulations revealing antimicrobial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mushrooms are rich in several bioactive metabolites among them are phenolic compounds, terpenoids, polysaccharides, lectins, and steroids including mycosterols, namely ergosterol [1]. Ethanolic extracts prepared by maceration of several mushroom species have been recently described as having antiinflammatory properties [2]. In the present work, ethanolic extracts of Agaricus bisporus L., Lentinus edodes (Berk.) Pegler and Pleurotus ostreatus (Jacq. ex Fr.) P.Kumm., purchased from a local supermarket in the Northeast of Portugal, were obtained by Soxhlet and chemically characterized in terms of ergosterol content by HPLC-UV. The antioxidant properties of these extracts were evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA), reducing power (RP), p. carotene bleaching inhibition (CBI) and lipid peroxidation inhibition in TBARS (thiobarbituric acid reactive substances) assay (LPI); the antioxidant activity of ergosterol was also evaluated by the DPPH assay. The anti-inflammatory activity of the same extracts and ergosterol was evaluated in LPS (lipopolysaccharide) stimulated RAW 264.7 macrophages, through the inhibition of NO production. A. bisporus revealed the highest content in ergosterol (44.8 ± 0.4 mg/ g extract) followed by P. ostreatus (34 ± 3 mg/ g extract) and finally L. edodes (8.9 ± 0.1 mg/ g extract). A. bisporus showed the highest RSA, RP and CBI (EC50 values= 7.0 ± 0.8, 2.3 ± 0.1 and 1.4 ± 0.1 mg/mL, respectively), while L. edodes presented the highest LPI (2.5 ± 0.1 mg/mL ); ergosterol revealed higher RSA (0.46±0. 0 I mg/mL) than the extracts. Concerning the anti-inflammatory potential, the most efficient species was L. edodes (lC50 value = 164 ± 16 J.lg/mL), followed by A. bisporus (185 ± 16 J.lg/mL) and finally P. ostreatus (290 ± 10 J.lg/mL). However, ergosterol presented lower activity (338 ± 23 J.lg/mL) due to its low solubility in the culture medium. The higher antioxidant properties displayed by A. bisporus can be related with its higher ergosterol content, while in the anti-inflammatory activity this relation cannot be established also due to the low solubility of ergosterol in the cells culture medium, decreasing the ergosterol availability. More studies are being conducted regarding the ergosterol solubility. Several compounds have been implicated in the bioactivity of mushrooms and in this study we have found that ergosterol can give an important contribution.